643 research outputs found

    An exactly solvable model of the BCS-BEC crossover

    Full text link
    We discuss an integrable model of interacting Fermions in one dimension, that allows an exact description of the crossover from a BCS- to a Bose-like superfluid. This model bridges the Gaudin-Yang model of attractive spin 1/2 Fermions to the Lieb-Liniger model of repulsive Bosons. Using a geometric resonance in the one-dimensional scattering length, the inverse coupling constant varies from minus infinity to plus infinity while the system evolves from a BCS-like state through a Tonks gas to a weakly interacting Bose gas of dimers. We study the ground state energy, the elementary density and spin excitations, and the correlation functions. An experimental realization with cold atoms of such a one-dimensional BCS-BEC crossover is proposed.Comment: corrected typos, minor modifications, submitted versio

    Superheating fields of superconductors: Asymptotic analysis and numerical results

    Full text link
    The superheated Meissner state in type-I superconductors is studied both analytically and numerically within the framework of Ginzburg-Landau theory. Using the method of matched asymptotic expansions we have developed a systematic expansion for the solutions of the Ginzburg-Landau equations in the limit of small κ\kappa, and have determined the maximum superheating field HshH_{\rm sh} for the existence of the metastable, superheated Meissner state as an expansion in powers of κ1/2\kappa^{1/2}. Our numerical solutions of these equations agree quite well with the asymptotic solutions for κ<0.5\kappa<0.5. The same asymptotic methods are also used to study the stability of the solutions, as well as a modified version of the Ginzburg-Landau equations which incorporates nonlocal electrodynamics. Finally, we compare our numerical results for the superheating field for large-κ\kappa against recent asymptotic results for large-κ\kappa, and again find a close agreement. Our results demonstrate the efficacy of the method of matched asymptotic expansions for dealing with problems in inhomogeneous superconductivity involving boundary layers.Comment: 14 pages, 8 uuencoded figures, Revtex 3.

    Dynamics of vortex penetration, jumpwise instabilities and nonlinear surface resistance of type-II superconductors in strong rf fields

    Full text link
    We consider nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωtB_0\sin\omega t. Using the London theory, we calculate the dissipated power Q(B0,ω)Q(B_0,\omega), and the transient time scales of vortex motion for the linear Bardeen-Stephen viscous drag force, which results in unphysically high vortex velocities during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t)v(t) results in a jump-wise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on nonlinear vortex viscosity η(v)\eta(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v)\eta(v), which not only results in the LO dependence of η(v)\eta(v) for a steady-state motion, but also takes into account retardation of temperature field around rapidly accelerating vortex, and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance RsR_s calculated as a function or rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance RiR_i at low TT, and a hysteretic low-field dependence of Ri(B0)R_i(B_0), which can {\it decrease} as B0B_0 is increased, reaching a minimum at B0B_0 much smaller than the thermodynamic critical field BcB_c.Comment: 18 figure

    Experimental Study of electron acceleration by plasma beat-waves with Nd lasers

    Get PDF
    International audienceWe have observed the acceleration of electrons by a beat-wave generated in a deuterium plasma by two Nd-YAG and Nd-YLF laser wavelengths. Electrons injected at an energy of 3.3 MeV are observed to be accelerated up to 4.7 MeV after the plasma. The energy gain is compatible with a peak electric field of the order of 1.2 GV/m. The experiment has been performed with different injection energies, from 2.5 to 3.3 MeV, with different plasma dimensions, and with different laser intensitie

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore